ZAP inhibits murine gammaherpesvirus 68 ORF64 expression and is antagonized by RTA.

نویسندگان

  • Yifang Xuan
  • Danyang Gong
  • Jing Qi
  • Chuanhui Han
  • Hongyu Deng
  • Guangxia Gao
چکیده

Zinc finger antiviral protein (ZAP) is an interferon-inducible host antiviral factor that specifically inhibits the replication of certain viruses, including HIV-1 and Ebola virus. ZAP functions as a dimer formed through intermolecular interactions of its N-terminal tails. ZAP binds directly to specific viral mRNAs and inhibits their expression by repressing translation and/or promoting degradation of the target mRNA. ZAP is not a universal antiviral factor, since some viruses grow normally in ZAP-expressing cells. It is not fully understood what determines whether a virus is susceptible to ZAP. We explored the interaction between ZAP and murine gammaherpesvirus 68 (MHV-68), whose life cycle has latent and lytic phases. We previously reported that ZAP inhibits the expression of M2, which is expressed mainly in the latent phase, and regulates MHV-68 latency in cultured cells. Here, we report that ZAP inhibits the expression of ORF64, a tegument protein that is expressed in the lytic phase and is essential for lytic replication. MHV-68 infection induced ZAP expression. However, ZAP did not inhibit lytic replication of MHV-68. We provide evidence showing that the antiviral activity of ZAP is antagonized by MHV-68 RTA, a critical viral transactivator expressed in the lytic phase. We further show that RTA inhibits the antiviral activity of ZAP by disrupting the N-terminal intermolecular interaction of ZAP. Our results provide an example of how a virus can escape ZAP-mediated immunity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zinc finger antiviral protein inhibits murine gammaherpesvirus 68 M2 expression and regulates viral latency in cultured cells.

Zinc finger antiviral protein (ZAP) is a host factor that specifically inhibits the replication of certain viruses by binding to specific viral mRNAs and repressing mRNA expression. Here we report that ZAP inhibits expression of murine gammaherpesvirus 68 (MHV-68) M2, which plays important roles in establishment and maintenance of viral latency. Downregulation of endogenous ZAP in cells harbori...

متن کامل

A functional ubiquitin-specific protease embedded in the large tegument protein (ORF64) of murine gammaherpesvirus 68 is active during the course of infection.

All herpesviruses contain a ubiquitin (Ub)-specific cysteine protease domain embedded within their large tegument protein, based on homology with the corresponding sequences of UL36 from herpes simplex virus type 1 and M48 from murine cytomegalovirus. This type of activity has yet to be demonstrated for cells infected with a gammaherpesvirus. By activity-based profiling, we show that the large ...

متن کامل

Disruption of gammaherpesvirus 68 gene 50 demonstrates that Rta is essential for virus replication.

Gammaherpesvirus pathogenesis is dependent on the ability of these viruses to establish a lifelong latent infection and the ability to reactivate from latency. Immediate-early genes of theses viruses are thought to be critical regulators of lytic replication and reactivation from latency. The gene 50-encoded Rta is the only immediate-early gene product that appears to be conserved among all cha...

متن کامل

Replication and transcription activator (RTA) of murine gammaherpesvirus 68 binds to an RTA-responsive element and activates the expression of ORF18.

The replication and transcription activator (RTA), mainly encoded by open reading frame 50, is an immediate-early gene product that is conserved among all characterized gammaherpesviruses. Previous studies have demonstrated that RTA proteins of Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) can activate the promoter of many viral early lytic genes through direct or ...

متن کامل

Rta of murine gammaherpesvirus 68 reactivates the complete lytic cycle from latency.

Herpesviruses are characterized as having two distinct life cycle phases: lytic replication and latency. The mechanisms of latency establishment and maintenance, as well as the switch from latency to lytic replication, are poorly understood. Human gammaherpesviruses, including Epstein-Barr virus (EBV) and human herpesvirus-8 (HHV-8), also known as Kaposi's sarcoma-associated herpesvirus (KSHV),...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 87 5  شماره 

صفحات  -

تاریخ انتشار 2013